Emerging Technologies

GSA's Proving Ground and Pilot to Portfolio Programs | U.S. General Services Administration

Interagency Sustainability Working Group | May 17, 2018

GSA: Largest Single U.S. Portfolio of Commercial Office Space

8,721	1,574	
PROPERTIES MANAGED, 377M ft ²	OWNED, 188M ft ²	

\$280M annual energy costs for owned real-estate.

At 52.2 kBTU/ft²/yr, GSA buildings are 33% more efficient than typical U.S. commercial buildings.

Emerging Technologies' two programs – GSA Proving Ground (GPG) and Pilot to Portfolio (P2P) – enable GSA to make sound investment decisions in next generation building technologies based on their real world performance

Adopting Next Gen Technology: Leading by Example

Emerging Technologies (ET) accelerates market acceptance by objectively assessing innovative building technologies in real-world environments (GPG), and deploying those that deliver (P2P)

GPG Objectives

Identify promising technologies at the edge of commercialization

Pilot technology installations within GSA's real estate portfolio

Partner with Department of Energy national laboratories to objectively evaluate real-world performance

Identify technologies with broad deployment potential for GSA, coordinate results with broader federal and CRE community

GPG Test Beds

Test-bed locations are representative of broad conditions

Technologies Tested by GPG with Published Results

Building Envelope	HVAC	Lighting	Energy Management	Water	On-Site Renewables
High-R Window Panel Retrofits	Condensing Boilers	Occupant Responsive Lighting	Wireless Sensor Networks	Weather Station for Irrigation Control	Photovoltaics
Thermochromic & Electrochromic Windows	Variable Refrigerant Flow	Integrated Daylighting Systems	Advanced Power Strips	Wireless Soil Moisture Sensors for Irrigation Control	PV Guidance
Vacuum Insulated Panels for Roofing	Variable-Speed Maglev & Direct-drive Screw Chillers	Wireless Advanced Lighting Controls	Control Optimization System for Chiller Plants	Non-Chemical Prevention of Hard Water Scale	Photovoltaic- Thermal System
Solar Control Films	Synchronous & Cogged Fan Belts	LED Fixtures with Integrated Controls	Socially Driven HVAC Optimization		Wood-Pellet-Fired Biomass Boiler
Electrochromic (EC) Windows for LPOEs	Multi-staged Indirect Evaporative Cooler	LED Downlight Lamps for CFL Fixtures			Honeycomb Solar Thermal Collector
EC Windows with Dynamic Controls for General Office Space	Wireless Pneumatic Thermostats	TLED Full Retrofit Kits			
Low-e Window Films	Smart Ceiling Fans			Broad Dep	loyment Potential for GSA
				"Top 5" Co	ost/Benefit for GSA*

* Quantitative Analysis in Process

Technologies Under Assessment

Building Envelope	HVAC	Lighting Energy Managemen		Water	On-Site Renewables
Dual Zone Indoor Shades	Drop-In Smart Switched Reluctance Motor	LED Retrofit Kits with ALCs	Adaptive Control for Chilled Water Plants	Non-Chemical Water Treatment Cooling Towers	
	High- efficiency RTU		Circuit-level Energy Monitoring	Chemical-free Water Treatment	
	Smart Circulator Pump		Predictive HVAC Optimization	Monitoring and Partial Water Softening	
	Intelligent Energy Valves for Hydronic Systems		Wireless Sensor and Analytics		
	Smart Air Scrubbers				

2018 DOE/GSA Joint Program: "Beyond Widgets"

Focus: technologies that optimize building components and/or help operators better understand when buildings are not functioning within operational or design parameters

Behind-the-Meter Load Optimization

Improving Overall Building Operations and Maintenance \$175B/YR commercial real-estate utility bills

Pilot to Portfolio supports the deployment of proven next generation technologies through process influence, portfolio analysis, project initiation support, and dynamic training

Transitioning Research into Practice

Providing actionable insights guides GSA's investment decisions in next-generation building technologies

63	33	20	13	\$7M
TECHNOLOGIES	REPORTS	TECHNOLOGIES	TECHNOLOGIES	ESTIMATED
EVALUATED	PUBLISHED	PROVEN FOR GSA	DEPLOYED	ANNUAL SAVINGS

Stakeholders: Test-bed Outcomes Publicly Available

Website & Webinars

Overview Infographics

Influencing Internal Processes

GSA processes and guidance support the introduction of next-generation technologies at key lifecycle entry points—end-of-life replacement, retrofits and new construction

END-OF-LIFE REPLACEMENT	RETROFITS	NEW CONSTRUCTION			
Next time you buy that, buy this instead	Choose best in class performance and/or payback	Target technologies with the biggest impact			
BUILDING TECHNOLOGY LIFE CYCLE ENTRY POINTS					

Using Analytics to Drive Uptake

Work across GSA databases to identify buildings with aging, inefficient equipment and tenant comfort issues. Leverage Federal buying power by providing decision makers with portfolio-level recommended technologies that solve these problems

Supporting Project Initiation

Provide project and property managers with technology specifications and cybersecurity approval needed to easily select innovative technologies

026 LED Downlight Lamps

Application Recessed downlight, surface mount		
Ballast for 4-pin	Powered by Electronic-ballast	
Ballast for 2-pin	Powered by Magnetic ballast	
ELECTRICAL		
Operating Voltage	120-277V	
Power Factor	0.90 at full light output	
Total Harmonic Distortion	<20%	
Efficacy, lumens per watt	70 at full light output	
PHOTOMETRIC PERFORMAN	CE	
Light Output	Minimum 450 lumens	
Zonal Lumen Density	>75% of total initial lumens within the 0-60° zone	
CCT (Color Temp)	3000K, 3500K, 4000K or as specified by site	
CRI	80, R9>0	
Lifetime	Minimum 36,000 hours L70	
Controls	Look for "dimmable" products before considering daylight harvesting or task tuning.	
	Wired and/or wireless control systems shall not be accessible, networked or otherwise tied to external systems unless specified by the GSA.	
Warranty	Minimum 5 years	
Qualifications	UL Classified for U.S. and Canada	

Delivering Training

Provide training resources architects, engineers, asset managers and facility managers need to successfully program, engineer, and operate next generation technologies

Category: Building Envelope

Strategy: Low-cost window retrofits Heating/Cooling Load Reduction through optimization of building envelope

Technology Description:

High-R Low-e Window Retrofit Panels – High-performance or "High-R" windows use advanced technology to deliver up to a sevenfold improvement in a window's thermal performance.

High-R panels are pre-manufactured window units that are installed on top of existing lowperforming windows and do not require removing or modifying systems in place. They provide a lowcost alternative (\$25/SF) to costly window replacements.

Manufacturer: Thermolite Window Systems

Category: Building Envelope

Strategy: Low-cost window retrofits Heating/Cooling Load Reduction through optimization of building envelope

Technology Aligned with GSA Needs and Priorities

How much energy is lost through inefficient windows in commercial buildings?

23[%]ENERGY USED TO HEAT & COOL BUILDINGS IS LOST THROUGH INEFFICIENT WINDOWS'

GSA INVENTORY: Avg. age = 48 years

Buildings with single-pane windows

particularly in cold climates where they perform poorly and/or in urban areas where acoustical (non-energy) benefit is important

Historical buildings with restrictions on facade interventions

> 470 historic properties
300 listed in the National Register of Historic Places
170 candidates for nomination

Category: Building Envelope

Strategy: Low-cost window retrofits Heating/Cooling Load Reduction through optimization of building envelope

Technology Components:

Category: Building Envelope

Strategy: Low-cost window retrofits Heating/Cooling Load Reduction through optimization of building envelope

Performance

Savings Diminish with Triple-Pane Hi-R Window Panel Retrofit

Significant energy savings, increased occupant satisfaction, and relatively nonintrusive installation methods make High-R panels a quick and manageable alternative to the full replacement of low-performance windows.

Category: HVAC

Strategy: Next Gen Chillers Heating/Cooling Load Reduction through efficient equipment

Technology Description

Variable-speed magnetic bearing chiller

The variable-speed magnetic bearing chiller (MBC) is one of GPG's successfully tested nextgeneration chiller technologies. The MBC or maglev chiller uses magnetic levitation to eliminate heat, noise, and vibration associated with standard chillers. Magnetic levitation chiller compressors improve the energy efficiency of air conditioning systems while minimizing the negative impacts of excess heat, noise, and vibration.

Manufacturer: Daikin (www.DaikinApplied.com)

Technology Aligned with GSA Needs and Priorities

How much energy is used for space cooling in U.S. office buildings?

32% of commercial buildings rely on chillers

TO PROVIDE THIS COOLING²

Category: HVAC

Strategy: Next Gen Chillers

Heating/Cooling Load Reduction through efficient equipment GSA INVENTORY: 80% of buildings >200,000 SF with central plant for heating/cooling using water-cooled chillers of some sort

Avg. chiller age = 48 years, resulting in equipment with need for end-of-life replacement

Category: HVAC

Strategy: Next Gen Chillers Heating/Cooling Load Reduction through efficient equipment

Category: HVAC

Strategy: Next Gen Chillers Heating/Cooling Load Reduction through efficient equipment

Technology Components

Maglev uses compressors that operate with oil-free bearings. Rather than using conventional lubricants, they operate by levitating the bearings in a magnetic field. These compressors use the centrifugal process to provide compression to the refrigerant and can vary their speeds as the chiller load changes.

Compressor cutaway

Technology Components

The technology integrates with diagnostic and monitoring systems, thus reducing long- and short-term maintenance needs and having the capability of a key component of control strategies.

Category: HVAC **Strategy:** Heating/Cooling Load Reduction through efficient equipment

Category: HVAC **Strategy:** Heating/Cooling Load Reduction through efficient equipment

Performance as Evaluated in GSA Test Bed in George Howard Jr. FB, AR

MBC is more efficient in partial rather than full loads, as legacy chillers were operated. Thus running multiple chillers at partial loads yields maximum efficiency.

Category: HVAC **Strategy:** Heating/Cooling Load Reduction through efficient equipment

Deployment of Maglev Chillers across GSA Portfolio

The maglev chiller is the technology with the widest deployment across the GSA portfolio, with a total of 210 deployments.

For more information: gsa.gov/GPG

GSA Opportunity – 15 Technologies with Broad Deployment Potential

Category	Technology	% Saved at Test Beds	Projected Payback (yrs)	Best Suited to
	APS for Workstations	26%	2	Deploy broadly.
Energy Management	Chiller Plant Control Optimization	35% Cooling	5	Chilled water plants with cooling loads > 3 million tons per year.
Energy Management	Socially Driven HVAC	20% cooling, 47% heating	NA	Facilities where thermal comfort is an issue.
	Wireless Sensor Networks	48% Cooling	2	Data centers.
	LED Downlight Lamps	40%	3	Spaces where advanced lighting controls are not desired or useful.
Lighting	TLED Full Retrofit Kits	30%	5	Fixtures where lenses/sockets are in good condition and ALC is useful.
	LEDs with Integrated Controls	60%	9	Retrofits with EUI > 3.25 kWh/ft²/yr and utility rates > \$0.10 kWh.
	EC Windows for LPOEs	9%	NA	Facilities where window glare compromises mission-critical visibility.
Building Envelope	Hi-R Low-E Window Panels	41%	7	Cold climates; single-pane windows, locations with outside noise issues
	Low-E Film	29% perimeter HVAC	2-6	All climate zones. Most cost-effective for single-pane clear windows.
	Condensing Boilers	14%	7	End-of-life replacement. Life-cycle cost effective when 3 -5 % more efficient than high-efficiency boilers.
HVAC	Fan Belts	2 - 20%	1-4	VAV Fans, retrofit with synchronous drive belts. CV Fans, replace at end-of- life with cogged V-belts.
	Magnetic Bearing Chiller (MBC)	42%	5	End-of-life replacement.
	Variable Speed Screw Chiller	11% compared to MBC	3	End-of-life replacement.
	Wireless Pneumatic Thermostats	20% cooling, 43% heating	6	Facilities with pneumatic control.